马尔科夫预测模型-电动液压滚圆机滚弧机折弯机
随着智能电网的发展和电网规模的迅速增长,及时、准确地掌握电力设备运行状态面临巨大的问题和挑战。近年来,电力信息化日臻完善,电力设备状态监测、生产管理、运行调度、环境气象等数据逐步实现集成共享,大数据技术为电力设备状态评估和故障诊断提供了全新的解决思路和技术手段。结合大数据技术及数据挖掘分析方法在电力设备状态评估中应用的现状,说明了电力设备状态大数据分析的内涵、目的、数据特征和基本架构,阐述了电力设备状态大数据集成、转换、清洗、分布式存储和处理、高效挖掘以及数据驱动的设备状态分析模型等关键技术马尔科夫预测模型-电动液压
滚圆机滚弧机折弯机张家港电动
滚圆机滚弧机折弯机。
本文由公司网站滚圆机网站 转摘采集转载中国知网整理! http://www.dapengkuoguanji.com/ 通过分析电力设备状态评估的总体需求,总结和探讨了大数据技术在电力设备状态评价、异常检测、故障预测、智能诊断等典型业务场景中应用的方法和效果,提出了研究和应用中面临的主要问题,并对相关技术的发展趋势进行了展望。 为了有效预测电力变压器故障发展的情况,提出了一种基于关联规则分析的电力变压器故障马尔科夫预测模型。运用云理论提取状态参量的云概念,使用Apriori算法挖掘状态参量与状态之间的关联规则以及各状态之间的关联规则;根据状态参量与状态之间的关联规则,建立基于云–Petri网的变压器状态分析模型,从而得到变压器在初始时各状态发生的可能性;利用各状态之间关联规则构建变压器状态转移矩阵,并建立修正因子体系对状态转移矩阵进行修正;将变压器初始时各状态的可能性结合修正后的状态转移矩阵对故障进行预测。实例计算表明,相比于IEC、BPNN与SVM,基于云–Petri网的分析模型具有更快的响应时间或更高的准确率,而对状态转移矩阵的修正可提高马尔科夫模型预测的准确率,能对变压器故障发展趋势进行更有效、合理的预测。马尔科夫预测模型-电动液压滚圆机滚弧机折弯机张家港电动滚圆机滚弧机折弯机
本文由公司网站滚圆机网站 转摘采集转载中国知网整理! http://www.dapengkuoguanji.com/